Skip to main content

Volume 2 Supplement 3

Abstracts of the 29th Annual Scientific Meeting of the Society for Immunotherapy of Cancer (SITC)

  • Poster presentation
  • Open access
  • Published:

STING contributes to anti-glioma immunity via triggering type-I IFN signals in the tumor microenvironment

While type-I interferons (IFNs) play critical roles in antiviral and antitumor activity, it remains to be elucidated how type-I IFNs are produced in sterile conditions of the tumor microenvironment and directly impacts tumor-infiltrating immune cells. We report that both human and de novo mouse gliomas show increased expression of type-I IFN messages, and in mice, CD11b+ brain-infiltrating leukocytes (BILs) are the main source of type-I IFNs that is induced partially in a STING (stimulator of IFN genes)-dependent manner. Consequently, glioma-bearing StingGt/Gt mice showed shorter survival, and lower expression levels of Ifns compared with wild-type mice. Furthermore, BILs of StingGt/Gt mice show increased CD11b+ Gr-1+ immature myeloid suppressor and CD25+ Foxp3+ regulatory T (Treg) cells, while decreased IFN-γ-producing CD8+ T cells. To determine the effects of type-I IFN expression in the glioma microenvironment, we utilized a novel reporter mouse model, in which the type-I IFN signaling induces the Mx1 (IFN-induced GTP-binding protein) promoter-driven Cre recombinase, which turns the expression of loxp-flanked tdTomato off, and turns green fluorescence protein (GFP) expression on, thereby enabling us to monitor the induction and effects of IFN signaling in the glioma microenvironment. CD4+ T cells that received direct type-I IFN signals (i.e., GFP+ cells) demonstrate lesser degrees of regulatory activity based on lower Foxp3 and Tgfb1 expression levels (Figure 1) as well as lesser suppression of CD8+ T cell proliferation (Figure B). IFN-sensed CD8+ T cells exhibit enhanced levels of Th1 markers, Tbx21 and Igfng (Figure C), as well as cytotoxic T-cell activity based on reverse antibody-dependent T-cell-mediated cytotoxicity assay (Figure D). Finally, intratumoral administration of a STING agonist (cyclic diguanylate monophosphate; c-di-GMP) improves the survival of glioma-bearing mice associated with enhanced type-I IFN signaling, Cxcl10 and Ccl5 and T cell migration into the brain. In a combination with subcutaneous OVA peptide-vaccination, c-di-GMP increased OVA-specific cytotoxicity of BILs and prolonged the survival. These data demonstrate significant contributions of STING to antitumor immunity via enhancement of the type-I IFN signaling in the tumor microenvironment, and imply a potential use of STING agonists for development of effective immunotherapy, such as the combination with antigen-specific vaccinations.

Figure 1
figure 1

Type-I IFNs directly impact on T-cell functions in glioma-developing mice. (A) CD4+ cells from draining LN derived from glioma-developing tdTomato mice were sorted into GFP- or GFP+ cells and incubated with (black bars) or without (grey bars) anti-CD3mAb. After 4 h, total RNA was extracted for evaluation of Foxp3 and Tgfb1 mRNA levels by qRT-PCR. (B) CFSE-labeled WT CD8+ T-cells were co-cultured with GFP- or GFP+ CD4+ T-cells in the presence of CD3 beads. After 60 h, division of CFSE-labeled CD8+ T-cells gated by reactivity to PE-Cy7-condjugated anti-CD8mAb was evaluated by CFSE intensity. As a negative control, CFSE-labeled WT CD8+ T-cells were cultured without any stimulation (left panel). Histograms are representative of two independent experiments. The bar graph shows the percentage of CD8+ cells that have divided at least twice in each of two stimulation conditions (N = 4/group; *p < 0.05). (C) GFP- or GFP+ CD8+ T-cells were incubated with (black bar) or without (grey bar) anti-CD3mAb. After 4 h, total RNA was extracted for evaluation of Tbx21 and Ifng mRNA expression levels by qRT-PCR (U: undetected). (D) Cytotoxic activity of GFP- and GFP+ CD8+ T-cells was evaluated by 51Cr-release assay. RMA-S cells untreated (left panel) or pretreated (right panel) with anti-CD3mAb (10 g/mL) were used as target cells. *p < 0.05 compared at the same E/T ratio.

Author information

Authors and Affiliations

Authors

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver (https://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohkuri, T., Ghosh, A., Kosaka, A. et al. STING contributes to anti-glioma immunity via triggering type-I IFN signals in the tumor microenvironment. j. immunotherapy cancer 2 (Suppl 3), P228 (2014). https://doi.org/10.1186/2051-1426-2-S3-P228

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/2051-1426-2-S3-P228

Keywords