Email updates

Keep up to date with the latest news and content from Journal for ImmunoTherapy of Cancer and BioMed Central.

Journal App

google play app store

This article is part of the supplement: Abstracts of the 28th Annual Scientific Meeting of the Society for Immunotherapy of Cancer (SITC)

Open Access Poster presentation

Immunogenicity of a lambda phage-based anti-cancer vaccine targeting HAAH

Steven Fuller, Solomon Stewart, Michael Lebowitz, Kanam Malhotra, Mark Semenuk, Biswajit Biswas and Hossein Ghanbari*

  • * Corresponding author: Hossein Ghanbari

Author Affiliations

Panacea Pharmaceuticals, Inc., Gaithersburg, MD, USA

For all author emails, please log on.

Journal for ImmunoTherapy of Cancer 2013, 1(Suppl 1):P210  doi:10.1186/2051-1426-1-S1-P210


The electronic version of this article is the complete one and can be found online at: http://www.immunotherapyofcancer.org/content/1/S1/P210


Published:7 November 2013

© 2013 Fuller et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Poster presentation

We have designed, developed and produced a lambda-phage based anti-cancer vaccine (nano-particle) targeting human aspartyl (asparaginyl) β-hydroxylase (HAAH). This follows accumulated evidence that HAAH meets requirements of a good target for anti-cancer immunotherapy. The protein is over-expressed on the surface of cancer cells and plays a central role in cancer etiology that effects cancer cell growth, motility and invasiveness. Over-expression of HAAH in transfected normal cells is sufficient to induce cellular transformation, and suppression of HAAH expression (siRNA) or neutralized activity (mAb) returns cancer cells to a normal phenotype. Moreover, tumor growth in xenograft models of human liver and lung cancer is significantly (>80%) inhibited by administration of anti-HAAH monoclonal antibodies. Therefore, it is expected that a patient polyclonal antibody response against HAAH should result in a significant therapeutic effect. HAAH is an embryonic protein and as such is a self antigen. Moreover, it has been observed that the HAAH gene is well conserved and mouse AAH has very high homology in the N-terminal portion of HAAH and complete homology in the mid and C-terminal portion. Historically, recombinant HAAH protein administered with adjuvants has not proven to be very immunogenic in mice. Here we have used immunocompetent mice to test immunogenicity of three phage-based vaccine candidates, encompassing the N-terminal, mid and C-terminal portions of the HAAH extracellular domain. All three entities display highly significant, dose-dependent immunogenicity. Animals were injected with 5x107-5x109 pfus on days 0, 7 and 14. Animals were bled on day 21 and immunogenicity was screened using recombinant HAAH in an ELISA format. Cell-based ELISAs using liver (FOCUS) and lung (H460) cancer cell lines as well as FACS analysis on these lines were performed. The immunized mice sera had clear anti-HAAH (or anti-cancer cell) activity in all tests. Immunogenicity was dose and construct dependent. This work demonstrates that a nano-particle, phage-based vaccine can break immune tolerance to the native HAAH protein and elicit a specific antibody response; indicating that such vaccines may have significant therapeutic value. Indeed preliminary data from an ongoing animal study testing this vaccine in a mouse tumor model has demonstrated a quick and very significant anti-tumor activity, slowing the growth of subcutaneously implanted mouse liver cancer tumors. Thus, this strategy of expressing portions of the HAAH protein on the surface of lambda-phage has resulted in overcoming tolerance to self antigen and promises to be an effective anti-cancer vaccine.